494 research outputs found

    In praise of tedious anatomy

    Get PDF
    Functional neuroimaging is fundamentally a tool for mapping function to structure, and its success consequently requires neuroanatomical precision and accuracy. Here we review the various means by which functional activation can be localized to neuroanatomy and suggest that the gold standard should be localization to the individual’s or group’s own anatomy through the use of neuroanatomical knowledge and atlases of neuroanatomy. While automated means of localization may be useful, they cannot provide the necessary accuracy, given variability between individuals. We also suggest that the field of functional neuroimaging needs to converge on a common set of methods for reporting functional localization including a common “standard” space and criteria for what constitutes sufficient evidence to report activation in terms of Brodmann’s areas

    Expertise with non-speech 'auditory Greebles' recruits speech-sensitive cortical regions

    Get PDF
    Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained listeners to categorize acoustically complex, artificial nonlinguistic sounds. Before and after training, we used functional MRI to measure how expertise with these sounds modulated temporal lobe activation. Participants’ ability to explicitly categorize the nonspeech sounds predicted the change in pretraining to posttraining activation in speech-sensitive regions of the left posterior superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus, seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based restructuring of high-dimensional perceptual space

    A Study of Null Effects for the Use of Transcranial Direct Current Stimulation (tDCS) in Adults With and Without Reading Impairment

    Get PDF
    There is evidence to support the hypothesis that the delivery of anodal transcranial direct current stimulation (tDCS) to the left temporoparietal junction can enhance performance on reading speed and reading accuracy (Costanzo et al., 2016b; Heth & Lavidor, 2015). Here, we explored whether we could demonstrate similar effects in adults with and without reading impairments. Method: Adults with (N = 33) and without (N = 29) reading impairment were randomly assigned to anodal or sham stimulation conditions. All individuals underwent a battery of reading assessments pre and post stimulation. The stimulation session involved 15 min of anodal/sham stimulation over the left temporoparietal junction while concurrently completing a computerized nonword segmentation task known to activate the temporoparietal junction. Results: There were no conclusive findings that anodal stimulation impacted reading performance for skilled or impaired readers. Conclusions: While tDCS may provide useful gains on reading performance in the paediatric population, much more work is needed to establish the parameters under which such findings would transfer to adult populations. The documentation, reporting, and interpreting of null effects of tDCS are immensely important to a field that is growing exponentially with much uncertainty

    On-line plasticity in spoken sentence comprehension: Adapting to time-compressed speech

    Get PDF
    Listeners show remarkable flexibility in Processing variation in speech signal. One striking example is the ease with which they adapt to novel speech distortions such as listening to someone with a foreign accent. Behavioural studies suggest that significant improvements in comprehension Occur rapidly - often within 10-20 sentences. In the present experiment, we investigate the neural changes underlying on-line adaptation to distorted speech using time-compressed speech. Listeners performed a sentence verification task on normal-speed and time-compressed sentences while their neural responses were recorded using fMRI. The results showed that rapid learning of the time-compressed speech occurred during presentation of the first block of 16 sentences and was associated with increased activation in left and right auditory association cortices and in left ventral premotor Cortex. These findings suggest that the ability to adapt to a distorted speech signal may, in part, rely on mapping novel acoustic patterns onto existing articulatory motor plans, consistent with the idea that speech perception involves integrating multi-modal information including auditory and motoric cues. (C) 2009 Elsevier Inc. All rights reserved

    Transcranial Magnetic Stimulation for Investigating Causal Brain-behavioral Relationships and their Time Course.

    Get PDF
    Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived "virtual lesion." Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading

    How does learning to read affect speech perception?

    Get PDF
    Behavioral studies have demonstrated that learning to read and write affects the processing of spoken language. The present study investigates the neural mechanism underlying the emergence of such orthographic effects during speech processing. Transcranial magnetic stimulation (TMS) was used to tease apart two competing hypotheses that consider this orthographic influence to be either a consequence of a change in the nature of the phonological representations during literacy acquisition or a consequence of online coactivation of the orthographic and phonological representations during speech processing. Participants performed an auditory lexical decision task in which the orthographic consistency of spoken words was manipulated and repetitive TMS was used to interfere with either phonological or orthographic processing by stimulating left supramarginal gyrus (SMG) or left ventral occipitotemporal cortex (vOTC), respectively. The advantage for consistently spelled words was removed only when the stimulation was delivered to SMG and not to vOTC, providing strong evidence that this effect arises at a phonological, rather than an orthographic, level. We propose a possible mechanistic explanation for the role of SMG in phonological processing and how this is affected by learning to read

    Dissociating visual form from lexical frequency using Japanese.

    Get PDF
    In Japanese, the same word can be written in either morphographic Kanji or syllabographic Hiragana and this provides a unique opportunity to disentangle a word's lexical frequency from the frequency of its visual form - an important distinction for understanding the neural information processing in regions engaged by reading. Behaviorally, participants responded more quickly to high than low frequency words and to visually familiar relative to less familiar words, independent of script. Critically, the imaging results showed that visual familiarity, as opposed to lexical frequency, had a strong effect on activation in ventral occipito-temporal cortex. Activation here was also greater for Kanji than Hiragana words and this was not due to their inherent differences in visual complexity. These findings can be understood within a predictive coding framework in which vOT receives bottom-up information encoding complex visual forms and top-down predictions from regions encoding non-visual attributes of the stimulus

    The social value of a QALY : raising the bar or barring the raise?

    Get PDF
    Background: Since the inception of the National Institute for Health and Clinical Excellence (NICE) in England, there have been questions about the empirical basis for the cost-per-QALY threshold used by NICE and whether QALYs gained by different beneficiaries of health care should be weighted equally. The Social Value of a QALY (SVQ) project, reported in this paper, was commissioned to address these two questions. The results of SVQ were released during a time of considerable debate about the NICE threshold, and authors with differing perspectives have drawn on the SVQ results to support their cases. As these discussions continue, and given the selective use of results by those involved, it is important, therefore, not only to present a summary overview of SVQ, but also for those who conducted the research to contribute to the debate as to its implications for NICE. Discussion: The issue of the threshold was addressed in two ways: first, by combining, via a set of models, the current UK Value of a Prevented Fatality (used in transport policy) with data on fatality age, life expectancy and age-related quality of life; and, second, via a survey designed to test the feasibility of combining respondents’ answers to willingness to pay and health state utility questions to arrive at values of a QALY. Modelling resulted in values of £10,000-£70,000 per QALY. Via survey research, most methods of aggregating the data resulted in values of a QALY of £18,000-£40,000, although others resulted in implausibly high values. An additional survey, addressing the issue of weighting QALYs, used two methods, one indicating that QALYs should not be weighted and the other that greater weight could be given to QALYs gained by some groups. Summary: Although we conducted only a feasibility study and a modelling exercise, neither present compelling evidence for moving the NICE threshold up or down. Some preliminary evidence would indicate it could be moved up for some types of QALY and down for others. While many members of the public appear to be open to the possibility of using somewhat different QALY weights for different groups of beneficiaries, we do not yet have any secure evidence base for introducing such a system
    corecore